
Regression Testing and Conformance
Testing Interactive Programs

Don Libes – National Institute of Standards and Technology

ABSTRACT

Testing interactive programs, by its nature, requires interaction – usually by real people.
Such testing is an expensive process and hence rarely done. Some interactive tools can be
used non-interactively to a limited extent, and are often tested only this way. Purely
interactive programs are rarely tested in any systematic way.

This paper describes testing of interactive line and character-oriented programs via
Expect. An immediate use of this is to build a test suite for automating standards
conformance of all of the interactive programs in POSIX 1003.2a (interactive shells and
tools), something which has not yet been accomplished by any means.

Introduction

Dennis Ritchie said [1] that ‘‘A program
designed for inputs from people is usually stressed
beyond the breaking point by computer-generated
inputs.’’ I would add the following: Any program
useful to people – interactively – is likely to be use-
ful to programs – non-interactively. A corollary of
Ritchie’s statement is that correct software function
during normal human use is not a very good test of a
program’s total correctness.

I claim that even when humans are explicitly
testing interactive software, the results are still quite
unreliable. Humans have many drawbacks:
� Humans know what is reasonable, and strive

to avoid incorrect input.
� Humans assume programs can do things that

have worked in earlier releases.
� Humans get bored quickly, and skip tests.
� Humans forget tests.
� Humans are expensive.

Regression testing requires the same testing to
be performed many times. For example, after fixing
a bug, a program should be tested without regard to
the particular change. Although a modified state-
ment is an obvious place to look for new bugs, sub-
tle bugs can manifest themselves in distant pieces of
software. The likelihood of such bugs is low com-
pared to more blatant problems such as incorrect
algorithms. Hence, they get short shrift from pro-
grammers during testing.

The UNIX tool-building paradigm encourages
designing programs that can be used interactively as
well as non-interactively. Such programs can be
embedded in pipelines. Pipelines are sets of pro-
grams, where each program produces output that
becomes input for the next program in the pipeline.
(The first program in a pipeline does not dynami-
cally consume output of another program, but may
for example, read a disk. Similarly, the last program

does not produce output that is immediately con-
sumed by another process, but may for example,
write to a disk or display.) This is the environment
in which Ritchie’s remark arose.

In practice, there are forms of input that pro-
duction programs do not generate. For example,
programs do not make typing errors and therefore do
not (press the backspace or delete key to) delete
characters just produced. Similarly, programs do not
enter control characters, such as might be used to
interrupt a process. This suggests that Ritchie was
too optimistic – even computer generated inputs still
test only a subset of a program’s interface.

Another problem is that some programs are
never used non-interactively. For example, the
UNIX passwd program [2] is designed only to be
run interactively. passwd ignores I/O redirection
and cannot be embedded in a pipeline so that input
comes from another program or file. It insists on
performing all I/O directly with a real user. passwd
was designed this way for security reasons, but the
result is that there is no way to test passwd non-
interactively. It is ironic that a program so critical
to system security has no way of being reliably
tested.

Some programs can be run interactively or
non-interactively, but detect the difference and
modify their behavior accordingly. For example,
virtually all programs that prompt when running
interactively disable prompting when running non-
interactively. Unfortunately, this makes it difficult
to automatically test their interactive behavior non-
interactively.

Command languages, such as the UNIX shell,
offer no way of dealing with programs that ‘‘know’’
they are interacting with a real user. While such
languages are rich in control and data structures and
can interact with users (prompting and reading
responses), they cannot do the same from programs.
Command languages in other popular environments

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 135

Testing Interactive Programs Libes

such as VMS and DOS are similarly lacking.

Expect – A Tool for Regression Testing Interac-
tions

Expect [3] is a program specifically designed to
interact with interactive programs. Expect commun-
icates with processes by interposing itself between
them and acting as an intelligent communications
switch. Pseudo-ttys [2] are used so that processes
believe they are talking to a real user.

This is useful for regression testing interactive
programs. Expect reads a script that resembles the
dialogue itself. By following the script, Expect
knows what can be expected from a program and
what the correct responses should be. The script can
specify responses by patterns, and can take different
actions on different patterns.

Scripts are written in a high-level language (Tcl
– Tool Control Language [4][5]) and support:
� send/expect sequences – expect patterns can

include regular expressions.
� high-level language – Control flow

(if/then/else, while, etc.) allows different
actions on different inputs, along with pro-
cedure definition, built-in expression evalua-
tion, and execution of arbitrary UNIX pro-
grams.

� job control – Multiple programs can be con-
trolled at the same time.

� user interaction – Control can be passed from
scripted to interactive mode and vice versa at
any time. The user can also be treated as an
I/O source/sink.

expect interactive
processes

script

Figure 1: An instance of Expect, communicating with 5 interactive processes directed by a script.

Expect is actually capable of general use in
automating or partially automating interactive pro-
grams, however this paper will focus on its use in
testing.

I will not discuss a high-level test harness.
This can be provided by any number of extant pack-
ages or shell scripts that are already in use for test-
ing non-interactive programs. This paper focuses on
the low-level problems with program interaction
itself which differ significantly from non-interactive
testing.

Examples and Guidelines

This section of the paper presents guidelines
and examples using Expect to test common interac-
tive UNIX tools, building upon earlier work [7].
Familiarity with the rudiments of Expect and UNIX
is assumed.

Example – passwd

The UNIX passwd program takes a username
as an argument, and interactively prompts for a pass-
word. The Expect script in Listing 1 takes a user-
name and a password as arguments, and can be run
non-interactively.

set password [lindex $argv 2]

spawn passwd [lindex $argv 1]

expect "password:"

send "$password\r"

expect "password:"

send "$password\r"

expect eof

Listing 1: Non-interactive passwd script. First
argument is username. Second argument is new
password.

In the first line of the script, the variable pass-
word is set to the value of the expression in brack-
ets. This expression returns the second argument of
the script by using the lindex command (list index).
The first argument of lindex is a list, from which it
retrieves the element corresponding to the position of
the second argument. argv refers to the arguments
of the script, in the same style as the C language
argv.

The next line starts the passwd program, with
the username passed as an argument.

In the third line, expect looks for the pattern
‘‘password:’’. There is no action specified, so the
expect just waits until the pattern is found before
continuing.

After receiving the prompt, the next line sends
a password to the current process. The \r indicates a
carriage-return. (All the ‘‘usual’’ C conventions are
supported.) There are two send/expect sequences
because passwd asks the password to be typed twice
as a spelling verification. There is no point to this

136 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Libes Testing Interactive Programs

in a non-interactive passwd, but the script has to do
this because passwd assumes it is interacting with a
human that does not type consistently.

The final expect eof searches for an end-of-file
in the output of passwd and demonstrates the use of
keyword patterns. Another one is timeout, used to
denote the failure of any pattern to match in a given
amount of time. Here, eof is necessary only because
passwd is carefully written to check that all of its
I/O succeeds, including the final newline produced
after the password has been entered a second time.

expect_after {

eof {exit [expr 10+$question]}

timeout {exit [expr 20+$question]}

}

set question 0

proc test {args} {

uplevel {incr question}

eval [concat expect $args]

}

spawn passwd [lindex $argv 1]

test {

"No such user" {exit 1}

"New password:"

}

send "[lindex $argv 2]\r"

test {

"Password too long" {exit 2}

"Password too short" {exit 3}

"Retype new password:"

}

send "[lindex $argv 3]\r"

test {

"Mismatch - password unchanged" {exit 4}

"^\r\n$"

}

test {

"*" {exit 5}

eof

}

Listing 2: Non-interactive passwd script with various tests for behavior at boundary conditions.

This script is sufficient to show the basic
interaction of the passwd command. A more com-
plete script would verify other behaviors. For exam-
ple, the script in Listing 2 checks several other
aspects of the passwd program. Complete prompts
are checked. Correct handling of garbage input is
checked. Process death, unusually slow response, or
any other unexpected behavior is also trapped. (The
non-interactive functionality of the command is not
tested by this script – it is a straightforward task in
any language.)

This script exits with a numerical indication of
what happened. In this case, 0 indicates passwd ran
normally, 1 that the user name was bogus, etc. 1X
indicates it died unexpectedly and 2X that it locked
up, where X is the particular question in passwd
being checked. Exit numbers are used for simplicity
here – descriptive strings could as easily be returned,
including messages from the spawned program
itself. In fact, it is typical to save the entire interac-
tion to a file, deleting it only if the command under
test behaves as expected. Otherwise the log is avail-
able for further examination.

This passwd testing script is designed to be
driven by another script. This second script reads a
file of arguments and expected results. For each set,
it calls the first script and then compares the results
to the expected results. (Since this task is non-
interactive, a regular shell can be used to interpret
this second script. As well, it can also be used to
test the non-interactive functionality for which
passwd is responsible, such as checking /etc/passwd
was correctly updated.) Listing 3 shows a sample
data file for testing passwd.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 137

Testing Interactive Programs Libes

The first field names the regression script to be
run. The second field is the username. The third
and fourth fields are the passwords to be entered
when prompted. The last field is the exit value that
should match the result of the Expect script. The
hyphen is just a placeholder for values that will
never be read. In the first test, ‘‘bogus’’ is a user
name that is invalid, to which passwd will respond
‘‘No such user’’. Expect will exit the script
with a value of 3, which also appears as the last ele-
ment in the first line of the regression suite data file.
In the last test, a control-C is actually sent to the
program to see if it aborts gracefully.

passwd.exp bogus - - 1

passwd.exp fred abledabl abledabl 0

passwd.exp fred abcdefghijklm - 3

passwd.exp fred abc - 2

passwd.exp fred foobar bar 4

passwd.exp fred ^C - 11

Listing 3: Example data file for testing passwd.

spawn csh ;# this is a comment

expect "$prompt" ;# assume prompt is set already

send "sleep 10\r" ;# run sleep command for 10 secs

exec sleep 1 ;# give time to let sleep begin

send "\cZ" ;# suspend it

exec sleep 10 ;# wait for 10 seconds

send "fg\r" ;# let sleep resume

set timeout 5 ;# timeout expect after 5 secs

expect "*$prompt" {print "control-Z stopped sleep’s clock\n"}

timeout {print "control-Z didn’t stop sleep’s clock\n"}

Listing 4: Test whether sleep counts time while suspended.

In this example, script arguments are sent to
programs literally. However, arguments may also be
used to name files or otherwise direct scripts.

For example, the following command sends the
contents of the file foo to an interactive process.

send "[exec cat foo]"

The command works as follows. exec executes
its arguments as an operating system command. On
a UNIX system, cat foo returns the contents of the
file named foo. Unlike spawn, exec waits for the
command to complete and returns the output, which
becomes the arguments to send, which sends it argu-
ments to the input of the current process.

Example – suspending sleep

The previous script showed an example of
sending control characters to a process, which in
response simply exited. Some programs actually use
control characters as a normal form of input. For
example, UNIX shells typically provide a variety of
interpretations for control characters such as

control-C (kill foreground process), control-Z
(suspend foreground process), control-S (stop out-
put), control-D (input end-of-file), control-O (flush
output) and others. A shell script containing such
characters will not have the desired effect. Indeed,
it does not make sense for a shell script to, say, flush
output. If this was intended, the script should not
have been written to produce the output in the first
place.

Most of these control characters are actually
first handled by the terminal driver, which then gen-
erates a signal handled by special code in the shell.
Since no terminal driver is used when a shell script
is executed, it is not possible for the script to call
this special code upon encountering these control
characters. In fact, shell implementors routinely dis-
able all interactive processing as a matter of course.
For example, the shell history functions (which
enables the user to recall previous commands) are
disabled when the shell is running non-interactively.
Again, there is no reason for a shell script to ever
need this.

The shell is characteristic, therefore, of a class
of programs which function differently when run
interactively as opposed to non-interactively. There
is no way to verify these interactive elements using
shell programming.

The only recourse is to take an approach like
Expect, which essentially deceives the shell into run-
ning as if it were really interactive. An Expect
script can send control characters, history commands
and any other commands. The script can also mani-
pulate the environment from underneath, for exam-
ple, by removing the shell’s current directory, or kil-
ling a child process of the shell, to check its

138 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Libes Testing Interactive Programs

response. Listing 4 shows a script which tests
whether suspending a sleep command actually stops
sleep’s internal clock.

The script works as follows. A sleep is issued
for 10 seconds, but is suspended after 1 second. The
Expect script than sleeps for 10 seconds, itself, after
which it resumes the suspended sleep. If Expect
then reads a shell prompt, the sleep has returned
which can only happen if the clock internal to the
sleep command was still running while it was
suspended. If the sleep time was indeed suspended,
the final expect will timeout, since sleep will still be
running for nine more seconds. (If you run this on
most UNIX systems you will find that control-Z
does not stop sleep’s clock, a counter-intuitive result
to most people, but something which must be
addressed by implementors and standard writers.)

expect

interactive
processes

script

Figure 2: Expect is communicating with 5 processes simultaneously. The script is in control. The user (lower

right-hand corner) only sees what the script says to send and is essentially treated as just another process.

Example – terminal driver

Scripts can change the default flow of control
so that it is not straight-line. Expect supports pro-
cedures and the ‘‘usual’’ procedural statements such
as if/then, while, etc. A common use of this is to
establish limits during conformance testing. For
example, one can write scripts to determine the long-
est variable name supported in the shell, maximum
number of arguments to commands in ftp, maximum
numbers of messages in mail message lists, etc.
Using shell scripts to solve this, while possible with
some programs, requires the process to be restarted
for each test. This can be very expensive for limits
that are large. In fact, all of the examples listed
here are in the thousands.

An Expect script could generate new tests
dynamically using a single process. The overhead in
such test generation is extremely low by comparison
with multiple process creations.

Listing 5 shows a script that determines the
longest input line acceptable to the UNIX terminal
driver using the Berkeley line discipline in canonical
(i.e., line-oriented) mode.

The script works by writing the letter ‘a’ in a
loop, each time testing that it has been echoed prop-
erly. When the buffer fills up, the terminal driver
echoes control-G’s instead of the typed letter. (On a
Sun 4 running SunOS4.1.2, this script reported that
the terminal driver only accepted 256 characters, a
surprisingly small number.)

spawn csh

expect $prompt

for {set i 0} {1} {incr i} {

send "a"

expect {

"\cG" break

timeout break

"a"

}

}

print "driver accepted $i chars\n"

Listing 5: Determine longest input line acceptable to
terminal driver while in canonical mode.

Example – testing buggy programs

The previous examples were completely
automated. However, Expect also accepts input
from a real user. It does this in two ways. send
and expect can perform I/O with a real user. In
fact, send and expect can perform I/O with any pro-
cess that has been spawned, and the user is just
treated as another such process for consistency. A
very elegant duality appears here – Expect is a pro-
cess that plays the part of a user, within which, the
user can play the part of a process. The user as pro-
cess is illustrated by the homunculus in the lower-
right corner of Figure 2.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 139

Testing Interactive Programs Libes

The user can take over control from the script
and vice versa.

spawn ...

initialize

for {} {1} {} {

punish ;# punishing procedure defined elsewhere

interact X ;# pass control to user

}

Listing 6: Run application through a set of punishing interactions, then let user interact. Repeat indefinitely.

spawn csh; set csh1 spawn_id

spawn csh; set csh2 spawn_id

send -i $csh1 "send tty\r"

expect -i $csh1 -re "(/.*)\r"

send -i $csh2 "send write $env(USER) $expect(1,string)\r"

expect -i $csh1 -re "Message from .*"

Listing 7: Beginning of a script to start two processes that interact with each other – in this case, via write.

set csh [spawn csh]

set cshnew [spawn csh.new]

while {-1!=[gets stdin input]} {

send -i $csh $input

send -i $cshnew $input

expect -i $csh -re ".+\r\n"

set output $expect_out(buffer)

expect -i $csh $output

if ![string match output $expect_out(buffer)] {

send_user "detected discrepancy on input $input\n"

send_user "original csh output $output\n"

send_user "new csh output $expect_out(buffer)\n"

interact

}

}

Listing 8: Run two shells simultaneously from the same input, stopping when there is a difference in their output.

Upon executing the interact command, Expect
stops reading from the script and creates a direct
link between the real user and the process. Thus, it
appears to the user as if the process was running
interactively in the ‘‘usual’’ way. This is especially
convenient when testing a program that takes a large
number of interactions before reaching a critical part
of the program that is buggy and with which the pro-
grammer wants to experiment by hand. Listing 6
shows an invocation of an unnamed application fol-
lowed by some initialization. In a loop, some
interactions occur from a procedure named punish
(to suggest a difficult set of interactions for the
application). Control is then passed to the user, who
can now directly interact with the application in an
attempt to investigate. This is illustrated by the
homunculus in the upper-left hand corner of Figure
2.

When the user presses ‘X’ (or whatever other
escape key is chosen), the user begins speaking
directly to the Expect interpreter. The user may
enter an Expect command such as return (return
control to the script), exit (exit the script), any valid
procedure name, or any valid Tcl command, includ-
ing even another Expect command or procedure
definition. This capability is a great convenience in
interactive programs that fail only after a large
number of interactions. The user may also run the
debugger under Expect, essentially providing the
user with a programmable debugger. (Very few
debuggers include a general-purpose programming
interface that can be applied in this way to interac-
tive programs.)

140 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Libes Testing Interactive Programs

Example – Testing interaction between multiple
processes

The previous example alluded to the ability of
Expect to control multiple processes. Naturally, this
is very important when testing interactions between
processes.

For example, it might be useful to test the
response of a running program to various signals
from another process. Expect doesn’t need to
interactively run programs to generate signals, since
it can directly call upon any UNIX command (kill,
in this case, which is non-interactive). However,
something like write does require two interactive
processes to test. Listing 7 displays the beginning of
such a script. This script starts two C shells. They
may be referred to by their spawn-id’s, which are
temporarily found in the variable spawn_id, set as a
side-effect of the spawn command. (spawn’s return
value is the UNIX process id.)

set prog [spawn prog]

set prognew [spawn prognew]

log_user 0 ;# turn off default logging

set log [open logfile w] ;# and log to file explicitly

while {1} {

expect {

-i $user_spawn_id -re .+ {

send -i $prog $expect_out(buffer)

send -i $prognew $expect_out(buffer)

continue -expect

}

-i $prog -re .+ {

getoutput prog

send_user $expect_out(buffer)

puts $logfile $expect_out(buffer)

}

-i $prognew -re .+ {

getoutput prognew

}

}

if [mismatch prog prognew] report_error

}

Listing 9: Run two programs interactively, let user keystrokes go to both until there is a difference in their

output. To avoid confusion, only one program’s output is returned to the user.

Further commands reference the spawn_id by
the ‘‘–i’’ flag. In this script, shell 1 executes the tty
command. The result is used by shell 2 when start-
ing a write process directed at shell 1. In this
script, both processes are run with the same user id,
but it is possible to use multiple logins by spawning
login first.

Notice that this script uses ‘‘-re’’ to introduce
egrep-style regular expressions. While Expect sup-
ports both egrep and glob-style expressions, the

egrep expressions are much more powerful, and
allow very easy access to substrings in matches.

Another use of this multiprocessing ability is to
test a new and old program simultaneously until a
discrepancy occurs. This is demonstrated in listing
8.

This script reads input from a data file and
feeds it to two processes until a difference is found
in their output. A more flexible alternative allows
the user to drive both programs simultaneously, use-
ful when a user may have difficulty describing a
scenario unless actually using and interacting with
the program for some time.

Like the UNIX script command which records
a session, Expect allows interaction to be logged but
more flexibly. Listing 9 shows an example.

This script starts two different versions of the
same program. In a loop, it listens for output from
the programs or the user simultaneously. (The string
‘‘-re .+’’ denotes a regular expression of one or
more characters.) If the user types, the same keys-
trokes are sent to both processes. If the programs
produce output, it is compared, and if there is a
difference, an error message is produced.

In this script, one program’s output is arbi-
trarily selected to copy back to the user. Since the
other program’s output is just a duplicate, there is no
point in copying it also. Similarly, one program’s
output is copied to a log file. An additional

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 141

Testing Interactive Programs Libes

statement could be added to log user keystrokes,
although that is usually not necessary since most
programs echo them.

getoutput and mismatch are not shown here.
getoutput simply appends the output to a buffer.
The mismatch procedure is a tiny bit trickier. It has
to account for the fact that programs may produce
output at different speeds, perhaps due to kernel
scheduling slop. So mismatch just matches to the
shorter length of either process’s output to the
current point, saving anything left over for the next
time around.

The technique described here is not limited to
two processes. Additional processes may be added,
each using one more case in the expect statement.
mismatch itself is designed to take an arbitrary
number of arguments.

The script itself can remain the same for vary-
ing numbers of processes because Tcl can construct
new statements at runtime. In particular, eval takes
an arbitrary list and executes it as a statement.
Thus, a list with the appropriate number of cases can
be constructed and evaluated on the fly.

Reality and Guidelines

Using the techniques described in this paper,
people have written numerous regression and confor-
mance tests for many interactive programs, such as
those of IEEE POSIX 1003.2a. The results have
been quite satisfying.

Writing such scripts takes experience, just like
any programming task. Generally, however, the
hardest part is getting a clear specification of the
user interface (UI). The facts of life are, unfor-
tunately, that UIs are notoriously underspecified and
nonstandard. However, once a specification is avail-
able, translation to an Expect script is straightfor-
ward.

To date, only a handful of the simplest interac-
tive commands have had UIs specified by POSIX
(much simpler and more boring than the examples
here). Test assertions are fairly informal in describ-
ing what is permitted, with the understanding that a
human will actually be dealing with a program and
‘‘understand’’, for example, what a ‘‘prompt’’ is.

On the other hand, users are automating
interactive programs, and explicit UI specifications
would help. ftp is a good (and bad) example. Each
message to the user is preceeded by a number, the
idea being that a program can read the message
number and discard the remainder of the text line
which is meant for a human. In practice, a program
has to look at both numbers and the messages them-
selves. The numbers were never clearly enough
specified and each implementation assigns different
numbers to differing conditions. Nonetheless, the
intent was there and ftp has been successfully
automated.

Designers of interactive programs should
account for the possibility of their programs being
automated no matter how hard it is for them to ima-
gine. Some programs say: ‘‘here is a flag to use
when running the program via a script. The flag
will change (i.e., simplify) the behavior of the pro-
gram.’’ This is not helpful for testing.

Designers of test assertions should be as
detailed as possible. Do not assume that interactive
programs will only be run by humans. Even
screen-oriented programs such as emacs and vi can
and have been automated.

Users who customize prompts should provide a
means for programs like Expect to be able to detect
this. For example, a generic shell prompt can be
detected by the pattern ‘‘(%|$|#) ’’. In practice,
few people leave their prompts unadulterated, and
Expect users are encouraged to define a prompt pat-
tern for themselves. For most programs, this is con-
veniently done in the same initialization file at the
same time as the prompt itself is defined. For exam-
ple, a shell prompt and pattern could be defined in a
.login file as:

set prompt="Yes master (\!%)> "

set prompt_pattern="Yes master (.*)> $"

Prompt patterns can be outwitted by similar text in
normal program output. This is particularly prob-
lematic in a login where a message-of-the-day may
contain virtually anything including program exam-
ples. A ‘$’ at the end of a pattern (shown above) is
helpful, as it allows a match only if nothing more
follows.

Performance

Performance is essentially the same as has
already been described [3], i.e., excellent. Expect is
always faster and more reliable than the alternative –
a human. Programs which can be broken by sending
control-C or other actions sufficiently fast or oddly
timed, can be systematically tested by Expect with
different inputs and timing until they break.

As described in [7], Expect recently incor-
porated a mechanism to slow it down to human-like
speeds for more authentic testing. Other parameters
are available to control human-like variability
characteristics in keyboarding.

Current and Future Work

Expect does not provide explicit support for
character-based graphics. In particular, the current
implementation understands I/O as strictly stream-
oriented. Character-based graphics can be manipu-
lated this way, but the script-writer must be aware of
issues such as how graphics are written to the
display. Although sufficiently expert coding can
simulate this (and indeed, a script exists to play the
screen-oriented game of hunt), several researchers
have experimented with the ability to do screen-

142 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Libes Testing Interactive Programs

oriented interactions. Ideally, a curses inverse is
needed to simulate any type of terminal. Researchers
are also experimenting with interfaces for describing
X or other window system events. These may
appear in future releases of Expect.

Applicability

Expect is useful for testing and debugging
interactive software. Expect can also be used for
building conformance tests of interactive software,
such as IEEE POSIX 1003.2a. This paper has
presented examples of each of these.

Expect has other uses than program testing.
Chief among them is the automation of interactive
programs. Nonetheless, Expect has been distributed
to over 4000 sites (by request), and the particular use
of Expect described herein has proven very popular.
Expect has been used to test a wide array of interac-
tive programs, including tip, csh, many local appli-
cations (including Expect itself), and even some
non-UNIX applications. While Expect is a UNIX
program, it can interact with non-UNIX processes by
remotely logging in (e.g., telnet, kermit) to non-
UNIX computers. The language used by Expect
does not favor UNIX over any other operating sys-
tem but is neutral in this regard.

Conclusion

Command shells of UNIX and other common
operating systems are incapable of controlling
interactive processes. In the past, testing interactive
software required a human to press keys and watch
for correct responses. After a few iterations, this
became quite tiresome. Naturally, people were
much less likely to run thorough regression tests
after making small changes that they thought prob-
ably didn’t affect other parts of a program.

Expect automates interaction, obviating the
need for human effort in regression testing and con-
formance testing. Using Expect, one can develop
automated test suites to assure reliability and con-
sistency with earlier software versions, or confor-
mance with standards, such as POSIX 1003.2a.
Expect is also useful for programs that are not yet
complete but need interactions in order to evoke
failure.

Acknowledgments

This work was supported by the National Insti-
tute of Standards and Technology (NIST) Automated
Manufacturing Research Facility (AMRF). The
AMRF is funded by both NIST and the Navy
Manufacturing Technology Program.

Steve Ray, Walter Rowe, Sandy Ressler, Chuck
Dinkel, Sheila Frankel, Brian Woodson, and Susan
Mulroney provided me with helpful criticism and
proofreading of this paper.

I’d like to thank everyone who has recently
given me ideas, bug reports and fixes, and porting
help, all of which have significantly improved
Expect beyond my original ideas and implementation
of it. These include John Conti, Steve Summit,
Mark Diekhans, Marty Olevitch, Scott Hess, Achille
Petrilli, Carl Witty, Stefan Farestam, Jay Shmidgall,
John Sellens, Jeff Okamoto, Bob Proulx, Hal Peter-
son, Wally Strzelec, Ted Gibson, Parag Patel, James
Davis, Pete Siemsen, Matthew Freedman, Michael
Grant, Phil Shepard, Newson Beebe, Ed Klein, Mar-
tin Leisner, Dave Schmitt, Ron Young, Ken Mandel-
berg, Dongchul Lim, Peter Funk, Karl Lehenbauer,
Oliver Kretzschmar, Ian Johnstone, Dave Coombs
and, of course, John Ousterhout.

Availability

Since the design and implementation of Expect
was paid for by the U.S. government, it is in the
public domain. However, the author and NIST
would like credit if this program, documentation or
portions of them are used. Expect may be ftp’d as
pub/expect/expect.shar.Z from ftp.cme.nist.gov.
Expect will be mailed to you, if you send the mail
message (no subject) send pub/expect/expect.shar.Z
to library@durer.cme.nist.gov.

Disclaimer

Certain commercial products are identified in
this article in order to adequately describe projects at
NIST. Such identification does not imply recom-
mendation or endorsement by the National Institute
of Standards and Technology.

References

[1] Dennis Ritchie, ‘‘The Evolution of the UNIX
Time-Sharing System’’, AT&T Bell Labora-
tories Technical Journal, Vol. 63, No. 8, Pt. 2,
p. 1577, October 1984.

[2] AT&T, UNIX Programmer’s Manual, Section
8.

[3] Don Libes, ‘‘Expect: Curing Those Uncontroll-
able Fits of Interaction’’, Froceedings of the
Summer 1990 USENIX Conference, Anaheim,
CA, June 10-15, 1990.

[4] John Ousterhout, ‘‘Tcl: An Embeddable Com-
mand Language’’, Froceedings of the Winter
1990 USENIX Conference, Washington, D.C.,
January 22-26, 1990.

[5] John Ousterhout, ‘‘tcl(3) – overview of tool
command language facilities’’, unpublished
manual page, University of California at Berke-
ley, January 1990.

[6] Don Libes, ‘‘The Expect User Manual – pro-
grammatic dialogue with interactive pro-
grams’’, to appear as a NIST IR, National
Institute of Standards and Technology, 1992.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 143

Testing Interactive Programs Libes

[7] Don Libes, ‘‘Expect: Scripts for Controlling
Interactive Processes’’, Computing Systems,
Vol. 4, No. 2, University of California Press
Journals, November 1991.

Author Information

Don Libes is the author of ‘‘Obfuscated C and
Other Mysteries’’ and co-author of ‘‘Life With
UNIX’’. In real life, Don is a computer scientist at
NIST where his research deals with manufacturing
automation. Don hopes one day to automate himself
out of a job. This paper describes the first step.
Reach him via U.S. Mail at National Institute of
Standards and Technology, Bldg 220, Rm A-127,
Gaithersburg, MD 20899. His electronic mail
address is libes@cme.nist.gov.

144 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

